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THE CALCULATION OF CONICAL SHELLS BY THE VARIATIONAL

METHOD OF V. Z. VLASOV

B. A. Konovalov, Candidate of Technical Sciences

The purpose of the present investigation is to obtain equations

for calculating slightly conical shells of constant thickness with

allowance for deplanation of the cross sections during both torsion

and bending and on the basis of these equations to show the possibility

of constructing more accurate solutions for shells of the aircraft-

wing type.

The theoretical basis of the present article is Prof. V. Z.

Vlasov's general variational method of reducing complex two-dimensional

contact problems of the theory of plates and shells to one-dimensional

problems. The entire substance of the article is divided into three

sections, each of which is self-contained.

Given in the first section is the derivation of a system of

differential equations for calculating a slightly conical shell of

constant thickness with allowance for deformation of the contour (i.e.,

according to.the theory of moments). These equations are a direct

generalization of equations obtained previosuly [4]. On the basis of
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the resulos of the first section, in the second and third sections,

respectively, more accurate solutions for the oases of banding and

torsion of a simply closed conical shell are constructed with the

proviso that the contour be indeformable.

Thus the equations in the first section are most general, and,

what is especially important to note, on the basis of them sufficiently

accurate solutions for a very wide class of problems can be obtained.

The degree of accuracy of the solutions will depend essentially on

the number of arxlma;i; f'z :-'c r.s ,zhich figure in the argumentation

and satisfy the physical meanin& of the problem.

The article is devoted mainly to a study of the stressed and

deformed states of a slightly conical shell with allowance for deplana-

tion of the cross sections during bending by crosscutting forces. Such

a formulation is entirely Justified, since failure to take into account

the effect of a constraint of the deplanation of the cross sections

during bending in prismatic shells can result in considerable errors

in the calculation. Professor 1. F. Obraztsov (Doctor of Tech.

Sciences) studied theoretically and proved experimentally [8, 9] the

fact of the appearance of considerable bimomental stresses in prismatic

shells as a result of a constraint of the deplanation of the cross

sections during bending. It was precisely this circumstance that

moved us to study the effect of a constraint of the deplanation occur-

ring during bending in conical shells.

The final results for stresses and displacements in the general

form for any shell parameters and for external loads of sufficiently

general type are obtained In the article.

In order to compare the solutiQn to the problem of torsion of a

conical shell with the results obtained by L. ±. Balabukh C3] and

TD-TT-62-1652/i÷2+4 -2-



B. P. Tsibulya [14]*, a numerical calculation of the normal stresses

was made and showed qualitative agreement with the results.

The solutions for bending and torsion of straight conical shells

can be applied to the calculation of swept-back conical shells. In

this case some of the boundary conditions must be written in a cross

section along a slanting edge [8].

There are no fundamental difficulties involved in taking the

elasticity of the embedding into account, i.e., in considering the

combined operation of a swept-back conical shell and a center-section

(subfuselage) shell [81.

The proposed methcd of calculating for bending and torsion can

also be extended to multiply closed conical shells [9].

The author deems it his duty to express his gratitude to A. N.

Yelpat'yevskiy, Cand. of Tech. Sci. and Senior Scientific Worker at

the Institute of Mechanics of the Academy of Sciences of the USSR, for

a number of valuable suggestions and recommendations.

Derivation of the Equations for Calculating Conical Shells

by Approximating the Displacements with the Aid of Power

Functions

Let us consider a conical shell of constant thickness related to

a system of coordinates z, S (Fig. i),

where z is the longitudinal coordinate and determines the position
of any transverse coordinate;

S is the contour coordinate of a point in the plane of this
cross section of the shell.

* Translator's Note: Reference (141, although cited in the text,
is not found in the list of references at the end of the article.
Possibly reference (13] was the one the author wished to cite.
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In accordance with the basic idea of Prof. V. Z. Vlasov's varia-

tional method, let us represent the longitudinal u(z, S) and the

transverse v(z, S) displacement of a point M(z, S) in the form of

the following finite expansions:

u (z, S) U, V (z) ,ý (S) (1= 1, 2.. m)

v (z, S)= V. (z)ý, (S) (k -1, 2.. ,
k

where Ui(z) and Vk(z) are the urnknnown generalized longitudinal and
transverse Cisplacements;

qi(S) and *k(S) are distribution functions of the generalized
longitudinal and transverse displacements along
the contour of the cross section of the shell
and are chosen beforehand.

Let us consider a system of i functions qi(S), each of which is

a power function of the order a with respect to the contour coordinate

S. We shall assume that a system of k functions *k(S) consists of

power functions of the order P with respect to the contour coordinate

S. The approximating functions of which the systems ci(S) and *k(S)

are composed must satisfy zhe condition of linear independence and the

condition of continuity of the longitudinal and transverse displacements

at all points of the contour.

Z £Fig. 1. Over-all
view of a conical
shell.



Neglecting the normal stresses acting along the coordinate lines

S, let us write Hooke's law for the shell under consideration in the

following form:

Oz (2)

In order to determine the unknown functions U,(z) and Vk(z), let

us apply the principle of possible displacements.

Let us take from a sht-ll with the cioss sections z = const and

z + dz = const an elementary strip (frame) of width dz. The isolated

strip (Fig. 2) is under the action of normal and tangential stresses

exerted in the cross sections and given surfaces by longitudinal

p(z, S) and transverse q(z, S) forces and, from the geometrical point

of view, possesses m longitudinal (from the plane of the cross section

of the shell) and n transverse ( in the plane of the cross section of

the shell) degrees of freedom. Let us write the work of the forces

acting on the isolated strip during a possible displacement from the

plane of the cross section uj = 9,(S), when Uj(z) = i, and in the

plane of the cross section vh = %h(S), when Vh(Z) = 1:

.4!J!~d~ s aas+c4', (z-. s) .+• s) ,z s =o (j = ,2z...,,); 1 (3)
5 +) s() I

o (S) ri (, -S_
+(8),ý (S) ,d - (Sad -

-- zS~dzA~d +~ q-q(z, (S)dzdS O (h-- 1,52... n).
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Let us replace the variable of

p(z..) ( integration S in Eqs. (3) by s .

As a result of this substitution

the integrals wi~h respect to the

(S.A-S- dz) to variable contours S in these equations

are transformed into integrals with
Fig. 2. For the derivation
of the equilibrium equations, respect to contours s of fixed cross
The forces acting on an iso-
lated elementary frame. section z = 7. Another consequence

of this substitution is the possi-

bility of comparing the values of any functqion of the systems mi(S)

and *k(S) in a moving and a fixed cross section.

Let us calculate the integrands in the function of the new
z

variable s .

For each of the functions of the systems 9,(S) ard ?Pk(S) the

following equalities hold true:

1ý ý ý.:(- (4)

The derivative of each function of the system gi(S) with respect

to the contour is determined from the formula

,1 Z Iz\--I(5)

The linear bending moment along the contour of the shell due to a

displacement v(z, S) = jVk (z) ?Pk(S) is determined by the equality

M¢(Z' S): V*(Z) MAI¢(S (6)
h

Comparing the displacements in a moving and a fixed cross section,

we obtain a formula for the linear bending moment of the shell Nk(S)

(Vk(z) - 1) for the new variable s

-6-



,(7)

The normal and tangential stresses and their derivatives with

respect to the coordinate, z along the generati-'ies, on the basis of

(i), (2), (4) and (5), are determined from the formulas

•" • '(8)

' \ / ' Z.1

G~ ~ NIU(Z f

Let us assume that 9 (S) and vh(S) are power functions of the

contour coordinate S with the exponents X and n. Since a and P

include the power values of the contour coordinate S of all the func-

tions of which the systems 9i(S) and Ik(S) are composed, they naturally

pass through the values X and n.

Substituting (4)-(8) in Eqs. (3), we obtain, respectively, the

following equalities:

E f , [) , (U;+U*,dz) (,, .dz_ •,Z -ý . -

jI > ? i S

(~L

+ Y V~ (S) (~ (s) dz , ds +

+ +P , SZ' ,(?IS) ( ." dz.ds • (=,1,,2

",, ,[ I(U- + U dz) ("-i--V+ l- g u(.) ]',,(s)+

+ Z4 d P~r+ I
+[ "h*+V""dz) ). .



E+(5)

& '+ S ) dz ds-,0 (h-12 n

Neglecting terms higher than the first infinitesimal order and

canoelling out dz, we obtain finally the following equations:

"T a1 • [(.y~+)•+ u4, -(*+y.'- 4 b,.U, -
£ j

**

(j-1.2. in); (9)

-dr u, I,, A.+(y'- •-
kk

(k= 1, 2 . . n),

where y

aj f) 5, (s) ýj (s) & ds; chig f (s) '~(s) Z s

(io)
c, (s( )s(s)'ds; S .,, (.E) . ,

(5) (,)

The constant coefficients determined by formulas (10) are calcu-

lated for any arbitrarily chosen fixed cross section.

The formulas for the coefficients (t0) can also be extended to

shells reinforced with longitudinal elements. In this case the

quadratures (1O) must be understood in the sense of Stieltjes Integrals.

The free terms in Eqz. (9) are determined from the formulas

pi- p, (g. ,S) Tj (s) ds;

et -q(x.S) .(S)ds(



Formulas (ii) are calculated for each specific case of the distr:

bution of the surface loads p(z, S) and q(z, S) along the contour S.

For example, in the case of a quadratic variation of the surface loads

p(z, S) and q(z, S) along the contour we obtain

P (z) P- / (z, s);
q~~z)=-~ 12 q z ) •,.

Equations (9) constitute a nonhomogeneous system of w. + n linear

differential equations with variable coefficients for the unknown

generalized displacements. This system is obtained by approximating

the displacements along the contour with the aid of an arbitrary number

of power functions of any order of the contour coordinate S. Therefor(

the system of equations (9) may, with complete justification, be calle'

a general system of differential equations for calculating slightly

conical shells of constant thickness and arbitrary cross section.

Assuming that each;f the sets of functions pi(S) and *k(S) is orthog-

onal, we obtain
ajt = i,•j(s) (.s) dF (s) ---O, ,.f j _ t;

(s)(2)

Under conditions (12) the system of equations (9) assumes the

formd [(-i 2+1,,,] U,\, -

-m(. y)'7 e jV,-, (.-_) V ; -+)=k
zIi

- (Iz"" ,2. ..n).
h-9



For a system of i functions qi(s) consisting of power fnctions

of the order a = X - const and a system of k functiois *k(S) of the

order a - - a - i - const, on the basis of (9), we obtain

".• N' a1, s!-" [(7)+ uj J- "(" )
1

. b7 1 U,' -
I I

C/hv~+4.)' -- ps-O

.c," r -d[("7-)a "z •' u'3 + )•,rhh - [(.T)•'-' V•] - (i4)

A k

-I 4j, - I ) s.v"" ",- +i] (L) bi-°

k

(h=1,2. .n).

The system of equations (I1) for determining the unknown general-

ized displaceenrts is obtained by approximating the displacements with

the aid of a power function of any order a of the contour coordinate S.

The system of equations (14) is a generalization of a system of

equations [4], where a = i, i.e., for functions that are linear gi(S)

and constant (of zero degree) Pk(S) with respect to the contour coordi-

nate S. For shells with a rigid contour (when Shk 0) Eqs. (14) are

sL-,plified and assume the form

d [(ý_2+1 U1 -- 2% 1 h l

i L - bi' u -

" Sdz I

A h

(Chi, -.U2.. ]) ; (+.)

-+ 0 q,-0

(10- ,. .)



Equations (15) constitute a system of differential equations

with variable coefficients of Euler type with respect to the function.,

U,(z) and V•(z) with a right member in the presence of surface loads.

The unknown functions, which are the generalized displacements

Ui(z) and Vk(z) of the above-mentioned systems of equations (9) and

(13)-(15), must satisfy the boundary conditions.

The latter are given in the form of geometrical, static, and mixet

conditions, depending oil the nature of the attachment of the edges of

the shell, and serve to determine the arbitrary constants of integra-

"tion. Let us show by examples the use of the systems of equations

that have been obtained.

A Study of Cross-Sectional Deplanation During Bending for

the Case Where the Deplanation is Approximated by Power

Functions

In this section we shall seek a solution for the stressed and

deformed states of a slightly conical shell of constant thickness

with allowance for cross-sectional deplanation during bending.

The deplanation along the contour of the cross section may be

given by one function or a system of functions of any degree relative

to the contour coordinate S, provided that these functions are in

keeping with the physical conditions of the problem posed.

Let us study two problems in general form.

i. The deplanation is approximated by linear functions.

2. The deplanation is approximated by quadratic functions.

A conical shell with a rigid contour (Shk 0 ) is loaded with a

concentrated crosscutting force Q and a tranoverse linear load q(z)

given by a linear law (Pig. 3).

-ii.-



The concentrated crosscutting force %, in keeping with the

method being used, is understood as a generalized transverse force,

the effect of which is taken into account in the formulation of the

boundary conditions.

~o b
4-

Fig. 3. Loading scheme and geometrical
parameters of a conical caisson.q0

'Izj = 7~tZ (- - <0 • b f 1;

F1  641;d F2~= ~

Cross section of shell (z - I)

The transverse linear load q(Z) is obtained by integrating along

the contour of the surface load over the possible displacement in

the plane of the cross section of the shell.

i. The Approximation of Deplanation Along the Contour with

the Aid of Linear Functions

Let us represent the longitudinal and transverse displacements

of the shell in the form of the following finite expansions:

U. (Z. $) - U, (Z) q, (S) + Us (S) ý (S);



The functions qi(S), 9•2 s), and *#i(S) shown in Fig. 4 are chosen

as follows:

, (S) =y (S);

:2 (S) = :-: -[ -:+ -% (S)I + cy (S); (±7)
,,(s)-y' (S).2W

'In formulas (17) the coordinates x(S) and y(S) and t'1 parameter

d 2 rAfer to a moving cross section z. The functions 9,(S) and 9 2 (S)

are linear, while *,(S) is constant with respect to the contour coor-

dinate S, and we can use the system of equations (15) for the solution

of the problem formulated.

e ~ ~ ~ d _i 2 c?

D # .! IE)o -- 2

0 - T; (S)

________l
0X

Fig. 4. Diagrams of approximating functions
along the contour of a caisson.

The system of equations (±5) will be simplified, if the functions

9,(S) and 92(S) are chosen orthogonal. The condition of orthogonality

of the functions 91(S) and 12 (S) for a moving cross section has the

form
al,- • -(S)3-(S)dF(S-o.



Evaluating this condition, we find:the coefficient of orthogonali-

zation for a moving cross section

Cn= -- !---
VJx

where Jx is the moment of inertia of the cross section z - • withrespect to the x-axis;

di, d2 , and F2 (cf. Fig. 3) are also calculated in the cross
section z I ..

From the system of equations (15) we obtain for the given loads

and displacements (16)

"Tall-- -- • u)--T• ,1 u +b, U 1)_-c 0vo;

dz(-b 21UI + NbAU + Cv =a0;

C11.d (_z Ui+Ci2.."(L U.) + 1(-- a ; dI V,) d- I ,.u , b I

G ((I) ) b 1 1.

Equations (18) can be obtained from the corresponding system of

equations given by Yelpat'yevskiy and Konovalov [41.

Bearing in mind the functions chosen and the symbols used (cf.

Fig. 4), we determine the coefficients figuring in system (18) in

a fixed cross section z = I from the formulas

CI)

(d2 (- Fl. f)j + ,IF(Q-A); i

(')

) F () )1 +

[A2=b• - .1 c'd•)•, (d2 cd,"() + C,,d2

b. •, (,)dF' (s)-, 2 (OF, + P'I);

-i4.-



Cit-• , (S) , (S)'dF(S)-s2F,;
is)

c12 - c21, ., (S) Tp (s) dF (s) = 2cF,; (19)

rn == ) (s) dF(s)=2F-,

where AF is the area of the cross section of a longitudinal element
of the shell (longeron belt, stringer);

Ji( is the bimoment of bending inertia.

Let us rewrite the system of equations (i8) with the coefficients

(19) as follows:

"u+ 3 Z" U; _. 2F., (U, +cU.+ V ) -- 0;
; 3 1 u J.r ,

U,, 3 -, - 7 - U. , • 4 , u 2+ " V,, ) = 0
3 -13 IU (20)
" U; -- U, + C +••i , (I ; ± •--

2F / hI2F,G (I-- 6) -- 1-"

Equations (20) constitute a nonhomogeneous system of three ordinary

linear differential equations with variable coefficients of Euler type

with respect to UiJ(z), U12 (z), and V{(z).

Let us replace the variable z by t according to the formula:

Bearing in mind that Ui(z) = UI(t), U2 (z) = U2 (t), and VI(z) =

- VI(t), we reduce system ("1), after performing the necessary opera-

tions, to a system of ordinary differential equations with constant

coefficients

U; (t) + 2U; (t)-- NU, (t)- cNU. (t) - N V; (t) - 0,

U;() + 2U (t) - LU (t) - MU 2 (1) - L V;()O (21)

SU;(q+u,(t)+C [U;(t)+ u, (1) +v;() + V, (d)-
2p•COO-b) (

-15-



where X, L, and M are coefficients determined by the formulas

N.= 2FI17

L YJz

M . 1 , /21 . .

Let us represent system (21) in the forp of Table 1, where D

and D2 denote, respectively, the first and second derivatives with

respect to the independent variable t of the functions in the upper

line.

TABLE I

1J1(i) U2 () V;Q() f R.ight Mem~ar

D2 + 2D-- N -cN -A' 0

- L 1)2 + -.1i -2L 0

qC1

Let us introduce into our study a new function f(t) such that:

U, (1) *- D2-N-
'+ 2D- M f M

U3(1) - D2+2D--NA4--N(t); (22)

U 2 tJ -D -21)

VI(I) -= D 2+2D-N -N f(I)

Then the first two equations in system (21) are satisfied identloally,

while the last equation gives the resolvent equation with respect

to-te newly introduced function f(t)



fV+5fIV(8- P)f" (4-3P)- 2P/,'- (23)

2FIG I(- b

where p.2p,_
7J÷

Thus the solution to system (21) is equivalent to the solution

of one nonhomogeneous linear differential equation of the fifth order

with constant coefficients (23).

The solution to Eq. (23), as is known, consists of the general

solution of the homogeneous equation plus the particular integral.

The homogeneous differential equation corresponding to (23) has

the form

* +± 5f' + (8 - p)"-- (4 - 3P) f" -2Pf'= O. (24)

Let us write the characteristic equation corresponding to (24)

n:.-r5,+(8.-.p),1 •+ (4--3P)n2-2Pn=o. (25)

Equation (25) is satisfied for n5 = 0. Moreover, Eq. (25) has

the general roots ni = -i and n 2 = -2 for all shell parameters, which

can be verified by direct substitution.

Calculating the remaining roots of the characteristic equation,

we obtain finally

nI--I; n.--2; n3 =---k; n4 =--l+k; n,=0O,
where

We can now write the general solution of the homogeneous equation

(2 41) f" P-Cr' + C.A-" + C3 e-c +,, + Ce(-,y + C S.

The particular integral of the nonhomogeneous equation (23) has

-17-



the following value:

-12F 0 (1 -- b) (P--) o'-4P0(l.-hb)P

The solution to Eq. (23) has the form

f(t)-ifl (1) +7(t). (26)

On the basis of (22) and (26), we oan obtain for the unknown

functions Ui(t), U2 (t), ard V{(t)

U,(t)- -- N k2Cle-I 1 PC..e-2+ + FC$+ *',2 el +

+ qb - Pt)VIO (I - b) p 2-P ):

U. (t)-L I- CIO-, + PC 3s-(0 4" +PC 4c(h-I)•+4 , 0 (I-b) (P--3)

2Plo (y- b)P P

V; (1)-. II +N(P+ 1)+M C~e-'+NPCe-2' +

-.P(P--) C;,'-( " + P(P- AI) Cc"-'' +

12F 1G0(t-- )(P -- ,)

+ •d 12 (N +M)- NVPtJ
4FIG (I - b) P

Returning to the variable z, we may write.

U3()a ( -NkC)I+ + PCs&)+(c, )

I (.!)-_,+P~
+ f01

2  
L5+1 + qo1b 2PIn71

12FIG Ql-b)\ I 4P 1 0(I-b)P

, (()-[--+N•+lI)+ talC
Us (Z) - I I- C 1 (.1 +P~±(~)+C() - (27')

+ 4F1  (,-,,,) (.-" +1 gab4FG(I-b)( ý3 ýL) 2F 1 0(I-b)P

+P(P-AI) C3 ().k+i+

+P(P--)C 4 (:) +NM)-C,

+ -3,-)1 (•*)I

+ fb [2-(N.+M)-NPIa



Integrating the last expression in (27), we obtain

V1 (Z)- +N(P-1)+A'rijC2 In-LNPC. L' (8

.-(P-M) c, P (P-M) C 4 (•+h+NPC (+1 +

24_ 1 (I-b) (P-3)
+ 2(N+- M) -[ -M ,NP (. -).1+"VI (Io (- b) PA V

After the functions U13(z), U2 (z), and V1 (z) are found, we procE

to the determination of the stresses.

The Determination of the Normal and Tangential Stresses in

the Shell

The normal stresses in the shell occurring, on the basis of (2)

during the displacements (16) are determined from the formula

"+ (S- L[-L C,'-+4FGb-) (7 1 j [()

+ (S)(
4FG(I- b)(P-3)

The tangential stresses in the shell occurring, on the basis of

Hooke's law, during the displacements (16) are determined from the

formula
S(Z, S) =10 [ U1 (Z) ?I (S)+u() ') + U (Z v72) , ()I (30o)

A more accurate. value of the tangential stresses may be obtained

from the differential equation of equilibrium

\--(,+I d [f\ ' U'1  S)&+ Oq -=0(

duz 'I asT '

For the conical shells under ,consideration with a1.2 = I the

flux of tangential forces q - r6 can be found by integrating (31):

-±9-



+ (32)
dXA [( .!I) + ' I ' 9U (

When determining the flux of tangential forces, it is necessary

to make a Out in the cross section of the shell to serve as the

initial point in calculating the integral terms (32). The flux of

tangential forces q0 (z) in each cross section of the shell in a simply

closed contour is determined from the equation of the moments of the

extern.al an.d !nterna. forces '.*t'h respect to an arbitrary point in the

cross section.

With the aid of cuts the cross section of a multiply closed shell

should be transformed into an open contour, which makes it possible to

determine the integral terms (32). The fluxes of tangential forces in

each of the i. contours q0 1(z) are determined from the equation of the

momenta and a system of i -. i equations of compatibility of the defor-

mationa.

The final expression for the flux of tangential forces has the

I4 +" _te,

S (33)

0

-~ k+1).4(-)i~ 3 +(k-!)P4,(!) 5+"

+-' q--- & /NLi (S),Lt~~C

fte. trAaY*5Aa din~acememit (defleatIon.), om~ th~e baasa or (16).

aIQ
____-____-,_T_ __,__• +• Cn
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P -4) C3 z+ z

7P -1 +r 17 ('3- f) .-A (1_ +*3j + NZ + 5

+21P10-(I-. b) (P- 3) ) + (34)

+ _2(N+M)-NP(In Lf-
4FI,',- b)P 7 - ] ,(s).

The Determination of the Arbitrary Constants

For each particular case of attachment of the shell the arbitrary

constants must be determined from the appropriate boundary conditions.

For example, for the shell shown in Fig. 3 the boundary conditionv

have the form

end section z = . rigidly attached:

1) U: (z)=O.0 2) U,(z) =O, 3) V, (z) 0,,O

end section z = m freely deplanes: (35)
4) Ul(z)=o, 5) U2(z)=O. i
6) 0cj, 1 U1 + c12U2+r1 V;j .-M= -Qo. I

Evaluating the boundary conditions (35), we obtain a system of

linear algebraic equations for the determination of the arbitrary

constants. This systen is shown in Table 2. It should be noted that

the system of equations for determining the arbitrary constants has

a very simple form ahd can be solved without any difficulties for any

parameters of the shell.

If the transverse lirear load acting 'on the shell is distributed

unifor-ly, we must take b - -• in fcr-ulas (27)-(20), (=n), and (A.)

and in Table 2.
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TABLE 2

System of Equations for Determining the Arbitrary

Constants

1C C! C3 C4 CS Ca Ri.,t Member

* I

4 . A -2P1 0 . 0 0 0

•÷'-<I 0( + . "+P: 0 °: .

21 -i.0 4F1 IG(I.-b)(-3)M5!2 +1u 0 0b

6 k 2 000 0 :0 Q0 2- 1 2- ( -
,ILl(! \IIq!

Ap~proxilmation of Deplianati~on A'long the Contour with the

Aid of Quadratic Functions

As was done previously, let us represent the longitudinal and

transverse displacements of the she'll in the for'm of the followi~ng

finite expansions:

U (z. S) - u, (Z)PI• (s) + u2(Z) Ts(S); }(;36)
V, (Z. S) - V, (Z)i'ý, (S).I

The functions Ti(s), vI(s) (of. Fig. 4), and 920) (Fig. 5) are

chosen as follows:
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'? (S)--y (S);

(s)[d2 (S)] (37)
,i,(s Y' (S).

The functions T,(S) and *i(S) remain the

- c ., same as in Section i. Let us write the

cIondition of orthogonality of the functions

=.(S) and .2(S) in a moving cross section

#"_ .C a -- ; I (S ) 2 (S ) d - (S ) -.-0 .

whence the coefficient of orthogonality of

C the functions •i(s) and P2(S)

A1 61,

Fig. 5. Diagram of where Jx is the moment of inertia of the

a quadratic deplana-
tion function and its cross section z = . with respect to the
derivative with re- x-axis; d,, d and F
spect to the contour 2  2 (cf. Fig. 4) are

of a caisson. also calculated in the cross section z = I..

In this case the function P2 (S) may be

represented in the form
12= _ '(S)]+ -A272Y(So ,' (,(38)

where the coordinates x(s) and y(s) and the parameter d 2 refer to a

fixed cross section z = 1.

Formula (38) shows that 92(S) is a quadratic function over the

entire contour of the shell.

In other words, the transition from the function 9 2 (s) of a

moving cross section tolhe function 92(s) calculated in the fixed

cross section z = 7 can be made according to the formula

-23-



For the solution of the problem formulated let us use the system

of equations (9). For the given loads and displacements (36) we have

d1 13 ($ 2 1

Frte ei ts a22  a;d b,.:,I -I b.,uw -h ve te lo (39)

d°2  db2 3 2+iGA) I (

°o, c,, . V'1

dzd 2 d dz-22~

* 3

The coefficients ae, b c,, bal2- b21 let us rw2 rc2:1 and rst
figuring in the system of equations (39) are determined from formulas
0-9).

For the coefficients a 22 and b 22 we have the following expressions:

0; (s) s

2 U'.2

d.2 F22 di F2 I dI2 (3F2 + PI'•6AF) ](0

,, '. (I ) R . - ( 0

where Jhv is the bimoment of bending inertia.

After the r oeffia ents are calculated, let us rewrite the system

of equations (39) as follows:

Zi h3e Uys..m 2F, thez2 2equaio _ finoK U; + 3•] U: -LJ• -: -£- L)- V, 0
,5 z24 ? 2rFj U z3 b223-u; + 5 z41 ul- 2-U._" '•P' v'. 0' (4i.)

112 "t.• .. 13 I~ I' " i,

--- - !(I- | _

We have thus obtained a nonhomogeneous system of three ordinary

linear differential equations with variable coefficients, each equation

beL g of sec6nd order.

The system of equations (41) is distinguished by the fact that,

in contrast to the system (20), the equatiohs figuring in it are not

-24-



of Euler type. Consequently we are unable to obtain a solution in

terms of a resolvent function. The solution to the system (4i) will

be sought bj successively eliminating the functions Ui(z), U2 (z), ar:

V{(z) figuring in it.

Let us intrcduce into our study a new variable t according to

the fc-rmula

I

Performing the necessary operations on the unknown functions,

let us represent the system of equations (41) in the form

U1 (1) -- 2U (t)- NU, (1) - N V, (I) - cNe'U, (t) = Q I

-LU 1 (1)-LiV; (1) + e' 1U2 (t)+,4U;(1)--AU(U,)=O; ()2)
U, (f) U-,- (i) + V; (t) V, () + ce'lU2 () + 2U.()1 I

2r, G (1--b6)

In equations (42) it is assumed that

N=, 2F, 1_2_•

1L= 2cF1 t_/2;

The solution of the nonhomogeneous system (42) consists of the

general solution of the homogeneous system and the particular integra",

for ui(t), u 2 (t), and V{(t) corresponding to the nature of the load

under consideration.

Let us first consider the homogeneous system.

By eliminating the function U2 (t) and its derivative from the

first and third equations of the system (42), we can verify that the

function V,(t) and the corresponding derivatives vanish simultaneously.

The equation obtained will contain only derivatives of the function

-25-



U1 (t)
U7+3U;+2ut-O.

The general solution fbr Ui(t) has the form

U1°(I)= CIe'c2 + C e-I + C, (43)

After the fwinction U(0)(t) has been determined, we eliminate

U2 (t) and its derivatives from the first and second equations of the

same system. The resulting equation containt the functions Ui(t) and

v1 (t) and the corresponding derivatives

u,"+4u, + (--N--M)Ui--2(3+ N+M)U;+NU,-- (4'4)

-NV7-2NVi + NRV; O.
where

R=3+2dF 2 12
31Jig

On the basis of (43), Eq. (44) can be represented as:

v7± 2v-RV;,=RC, C-21 + I? + M ) Ce-I +IC. (45)

The general solution for V'T(t) will consist of the general solu-

tion to the homogeneous equation corresponding to (45) and its partic-

ular integral and will have the form

+ C 1e--iIt

U(0)(t) is determined from the first equation of the system (42):

CU2() (t) = NC.,e- - C4 e(' +" ,i) _ CSe-(2+)R•,.

The particular integrals for U,(t), U2 (t), and Vt(t) in the system

of equations (42) will be sought in the form

Uj(I)mA~et+B11; 1
U, (1)- A + B/;- j(6)

-2 I
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Substituting the expressions (46) in each equation of the system

(42) and equating coefficients of like powers (ePt) in the left and

right members, we obtain the following systems of equations for deter-

mining the arbitrary constants figuring in (46):

A, + -- A.. + A,-=. 0; (3+M )B .+LB,- =0 (47)

_WO 2 . lc1 B~ qOIbA,- +M., + A3 = _ - - o" , IcB.,+B,.= + ql

"4FIG( -b) 2F 1G(I- b) )

Determining Ai, A2, ... B3 from the above, we find the particular

integrals
( q 0

2N 1e 3 b\;
12F, G (,--:i) -

.( - __oj0I2L /(2 _ I

V;(/) 0"-.°--' N - 3A' et'-3N-±-t+6"+3 '1I
,2P 1 0(I-b)'\ I-3 I R--j"(48

For the unknown functions of the nonhomogeneous system (42) we

have the following formulas:

U, (f) .= C,e~21 +- C,e-I +r C3 - q12Nt' - b) el-3-

(R+I)N e' C~c(_2+,,•T

-- 1Cse-(2+)W4:1' + q0I
2
L (1

C 4FIG(I- b) 3 RI I
V,(t)=_C~e2'4+ M _! ]' C~e_,_C3+v•(o= c~e-'-[l--Cic'-C

+ C4e(-' -I I+ C5ce-(I +, '. R+It +

.qo2  [(N __. -' et_ 3 N 1__t+6Af+3-±
12PIG (1-6) R-3/ R I

Returning to the variable z, we obtain

U1 (Z) C(Y) + C, (-L)+ CS-
"W 90N 3" k' In- (49)- 2PIo I-b,) VT: - I

U, (2) Le•• Tj "T Y2- C(

.• -27-



C T (2 +V YTb-,) +

+qol2L[ bz\I
-4F,0(l-6) IR"3 R I +

v Y+)-_, +AW-)C3-+-CT I-ra - *-T, +

[2, ( A-b)l\--'3,'- '-3N- In t+

,+ ,_I .

The function Vxr(z) is determired by integrating the last expres-

sion in (49)

'i' J I(R+I)N, ji
C4 z I 1 , (L) , + C-,'$ +

T 7W-7 I (50)+ q012 N-, 3A, +2V

+2+3 -•6Ni24FI-(I-b)-( R-3 )"

+? 12i ])+

The Determination of the Normal and Tangential Stresses in

the Shell

The normal stresses in the shell are determined from the formula

o; (,s)f !.E --2c, (-'--' ±cJ'V-..C (L [0 1 -
I I I I Y 12tO0(i-.).3 [(\'"l +, 2L C__L-3+

+ (x-3+)€i-T 2+I'TT C (a-- -RI (i

- qobL -

-28-



The tangential stresses in the shell can be found according to

Hooke's law fran (30).

It is recommended that the tangential stresses (or the flux of

tangential forces q = T6) be determined by integrating the differentia

equation of equilibrium (31).

The flux of tangential forces in the case under consideration,

where a. = I and a2 = 2, is determined by the following expression:

_!C(_)-4_ qo2N Z) -1
J2 6PG(b) 4 (1"+

+ qoblN ( 2 S

VIG0(I-b) (S4S

(2/S iF - z() + (52)

S

+ 2 q0 bIL~ (~~3] ~SdJQ+2F.oG°Y- b,) ,1% f. ?2. ( .S),,, s +÷ q0,.

The transverse displacement (deflection) is determined from the

formula

1)N I

te en sect o± the"M shllar (53)
C s---- ' T + C 6 + 4 ~ a z b [ ( N --- " " -1 T -L-

'R-°• (°- '()+• T 1 4F, I-r, b) •÷'l•, I.(

The Determination of t;le Arbitrary Constants

If the and sections of the shell are attached an shown In Fig. 3,

the boundary conditions (35) give a system of linear algebraic equations

for determining the arbitrary constants. This system is shown in Table

3.

,• -29-



For a u•iiformly distributed transverse linear load we assume

in formulas (49)-(53) and in Table 3 that b - - a.

Considering shells with specific parameters and load, we determine

the arbitrary constants from Tables 2 and 3. Substituting the values

of the arbitrary constants and of the corresponding coefficients (k,

L, M, N, P, R) in formulas (29), (33), (34) and (51)-(53), we obtain

the solutions for the stressed and deformed states of the shell. Thus

the problem formulated is solved in the general form.

As can be seen, the solutions given in Section 2 are more diffi-

cult to obtain than the solution given in Section i. However, it is

to be expected that the stresses represented by formulas (51) and (52)

will be closer to the actual stresses than those which can be deter-

mined from formulas (29) and (33). This circumstance was noted by

Obraztsov [8] for an analogous problem in prismatic shells.

In practical calculations it is entirely permissable to use the

solutions given in Section 1.

It would be of interest to simplify the solutions obtained without

greatly prejudicing their accuracy and to make them more convenient

for practical application.

The solutions given above can be made more accurate by retaining

a greater number of terms in the expansions (1).

Torsion of a Conical Shell

It is known that in a conical shell normal stresses appear even

when the shell is subjected to torsion by a constant moment and by

free distortion of the end sections. The normal stresses in this cae

are a consequence of an internal constraint caysed by the conicity¥of

the shell.
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TABLE 3

System of Equations for Determining the Arbitrary Constants

C, C2 Ca C4  C5 CMCs Ri• Member

Op

+1 0l 1 0! 0 + 12FIG (V-b)

c t q012cL I I 2.2 (R+1)N 0 -N -z04F,--b) R-1

+1 4 1 24FG V(1-b) R-3

(I
.+.2(.~.) -ii - 12F 0(-b [(I n-.

--;A 0 0 0 , b m )+1

4 0 0

: 2cL M q0Ibct +1

1 0 - 2F 1G 4F,- - (1 -b) I

Constrained torsion of straight and swept-back slightly conical

shells was studied by Balabukh [i], Yelpat'yevskiy and Konovalov [4],

and Novitskiy [7'].

Let us solve the problem of constrained torsion of a straight

slightly conical shell of constant thickness with a rigid contour

on the basis of Prof. V. Z. Vlasov's variational method.

In the first approximation we shall assume that the displacements

of the shell have only two degrees of freedom: one in the longitudinal

direction (only one term is retained in the fortnula for the longitu-

dinal displacement (I)) and one ini the transverse direction.
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The shell is assumed

to be loaded with a concen-

trated torque H0 in the

end cross section z - m

d, 1 and a linear torque pl(z)

given by a linear law

(Fig. 6).
0/ Let us give the longi-

tudinal and transverse
Fig. 6. Loading scheme of a conical
caisson. displacements of the shell

UR)" --- " (z- I- < c,<mI
F,) - 2in the following form:

Cross section of shell (z = Z) (z. S) - U (z), (S, (54)

The functions 9,(S) and 7?i(S) represented in Fig. 7 are chosen

as follows:
•,(S) x MsY (sý-

S(55)

where h(S) is the length of the perpendicular dropped from the origin

to the corresponding plate of the shell.

The function 9i(S) is quadratic, while the function *,(S) is

linear with respect to the contour coordinate S.

For the solution of the problem formulated let us use the system

of equations (45).

For the given loads and displacements (54) we obtain

d ~ i 11s " -Tz3, Iý
A)i U, 1 (56)

-)--+ I



The coefficients figuring in the

equations of the system (56) are calcu-

lated in a fixed cross section z =

d

wfrom the formulas

Fi .7..iarm ofa,=rox ine<),rtiaf.-,p.+:)

a°.• I(s) (s) --+s) J - dF,6+F.);

24 ,

Fig ter. ceartain trnfoarmw

t (5)i

b(U+u+b,(zv +3V-;,,,= • d, ,;. (58

11cC - o)' 1 s F(s) , (d22,+.).

_ '
Wter haerotainetransformationd, is ate neeu system of trryineal

dtifntaeui with vie coefficients ofong the tyeefo

rp to .( aG r+(z each eqato b eg . (5o)Afer aerotainetra nsorhmations etous wrtth system of tordnylieqa-

difrnileutions (6 with varabe coefficients (57 Eun tyhe form

We have already encountered the solution of such a system lsystem

(20)].

After replacing the variable z by t according to the formula

S~-33-



performing the necessary operations on the unknown functions, let us

write the system (58) in the form of Table 4, where D and D denote,

respectively, the first and second derivative with respect to the

indpendent variable t of the functions in the upper line.

Let us introduce into
TABLE 4 our study a new variable

f(t), while identicallyU, (1) v, (t) ight rem-ber-

satisfying the first equa-

212- -b2 tion of the system (58)
x U I(,)= + A

6: (D + 3) b, (D- + 3) (59)
V' 0 -b212 6

From the second equa-

tion in (58) we obtain a resolvent equation with respect to f(t)

f"' + 7f"+ (12-- k2) f' -3k2f_ (60)

e 21),

where b2 b2

k2=k---2 12."ab" (6i)

Equation (60) is a nonhrmogeneous linear differential equation of

the third order with constant coefficients.

The homogeneous differential equation corresponding to (60) has

the form

"' + 71" + (12-- k2)f' - 3k2f O.

Its characteristic equation is written as:

nh + 7n4 + (12- k) n - 3k= O. (62)

_34-



Equation (62) for any shell parameters has the roots

n 1 -- 3: f12 w. -2-/4-+7k2; na,ý-2+1V4-+7.

Let us write the general solution for the function f(t):

f(O) (I)- Ce-31 + Ce-(2+IVti f)l + C3 e("2 -4 14i*k )t.

The particular integral (60) has the following value:

V~01%b r - i e 1 - e-211
(I- - )a b [ (3 4-V) 4 + k2  I -

The solution to Eq. (60) has the form

f (1)= f(°(M + 7(t). (63)

Let us pass, according to formulas (59), from f(t) to U1 (t)

and V{(t); we replace the variable t by z and obtain expressions for

the unknown functions

U, (z)=r C1 , 3( +± C. .)- (2 ,4 k , C (2 +)1 -+

+ [ 1 - 2+ •

X )a k( 6 4 )
+• (-• 3a+ c, 1_ b).2+-3ý

, b 21 ) 1Y '4+k

2 -Z

The function Vi(z) is found by integrating the last expression

in (64)

V, (Z) -I C, -Z~ 02

+ b2(1i* + )

_y L2 3a + b,12 I- 4a 4-b,12 X( 11( [Xa, 1 2(3+hk2) 1 4+k I I



The Determination of the Normal and Tangential Stresses in

the Shell

The normal stresses in the shell are determined from the formula

C, (4 2 4-V4T+h2Y-+P

2 (66)

1 + 22 1 S
+ (I-). Lb 2(3 k 2) 2 I()

The tangential stresses in the shell can be determined from Hooke's

law.

As was done previously, it is recommended that the tangential

stresses or the flux of tangential forces q = T6 be determined by

integrating the differential equation of equilibrium (31).

In the case of the quadratic function 9,(s) (a - 2); after perform-

ing the necessary operations, we have for q(z, S)

q (z, S)= - [C, + (2 + V4+k 2 ) J/4+ k2 C2 x

-W~ __ _ __ (')-' I '.S&S q(
2(I-A)ab1 (3- k.)

0

The longitudinal and transverse displacements, on the basis of

(55), (64), and (65), are found from (54). In practical calculations

for torsion we are interested in the angles of twist of the shell

O(z) = Vi(z), which are determined from (65).

The Determi4 nation of thie Arbitrary Constants

Evaluating the boundary conditions for each particular case of

attachment of the end sections of the shell, we obtain a system of
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linear algebraic equations for determining the arbitrary constants.

Let us consider the following two cases.

Case i.

The shell (cf. Fig. 6) is rigidly attached in the cross section

z = 7 and freely deplanes in the section z = m. The arbitrary constants

are determined from the boundary conditions

z-1-
1. U, (z):-- 0Q,
2. V1 (z)-=O.

Z=-M (68)
3. U'1 (z) =-O;
4. m)(bU. + b, V,ý),= HO.

Case 2.

The end sections of the shell (cf. Fig. 6) z = t and z = m freely

deplane. In order for the shell to be in equilibrium in the section

z = z under the action of the given loads, we apply the torque

1 z H -"+ Hv,

where HmIR0(l+- 2 x)(1-,m) is a torque equalizing the linear torque

P'( 2 ) over the length of the shell L = I - m.

The arbitrary constants are determined from the boundary conditiont

2. z=rn U',(z)=O; I
3. .•(69)

3. z=Z . ef(b2UI+blVj)=--Hx(,); 
(69

4. z=z,, VI (z)=-0,

where Hzc(,) == H, + • (z-m). is the torque in a moving cross, section
2

of the shell.

It is enough to fulfill the third and fourth conditions of (69)

in any cross section of the interval m < z i . The cross section in

S-137'-



"w!,,ich the fourth condition is fulfilled is the initial section when

calculating the transverse displacements.

Let us write conditions (58) and (59) in the form of Tables 5 and

6.

Systems of Equations for Determining the Arbitrary Constants

It would be interesting to consider a shell loaded with a constant

linear torque 0'h.

In this case we assume that X = - . in formulas (64)-(67) and

in Tables 5 and 6. The problem formulated, as in the case of bending,

is solved in general form. For the purpose of comparing the solutions

obtained by us with the results obtained by L. I. Balabukh [i] and

B. P. Tsibulya [14], a calculation of the normal stresses in a conical

shell with a rigid contour was made for the following parameter values

in the end section z = 1:

di = 18 cm; d2 =60 cm; 6 = 0.2 cm; 62 = 0.3 cm; AF =3.5 cm2;

1 = 213.5 cm; m = 93.5 cm.

The length of the shell L I - m = 120 cm;
E

The coefficient y = -a = 2.67.

The conical shell in the end sections z = I and z = m is loaded

with a torque H0 .

The coefficients (57) and (61) have the following values:

a=5,527. 10"IG; b•-=9396G; b2=35640; k2=66,36.

The roots of the characteristic equation (62)

n=--3; n.=--10,388; n=,+6,38 8.

The normal stresses are determined along the edge of the shell

(Xs)-- + , ';Y(S)- +- (s)X(s)Y(s)
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from formulas (66). Graphs of the normal stresses for the two cases

of attachment of the end sections of the shell considered above are

shown in Fig. 8.

TABLE 5 (Case I)

C3, R+ i • ght M-e-mber

C2cIb -1 C4L.

.1 +1 +1 0 + (X) b, 12(3 + *) 4+k2 I]

2 + b,12___ b2 ToI 4a + b,1
2

S 2b:12 b (1 + V'4--k ) b, 0( --/ j2) +(I-).)ab, 4+k 2

++
3 +3 12 + ),4 +"+ P'-'' )( ÷- * t(2-/ -"- )(--kt÷''•.-Io ' , xt 1• )'0 L- C . ,'"2 X /,., l

&2 (3+ kI 0 0 02



TABLE 6 (Case II)

Condi- C1  C2  CS C4  it
tinn| t _ -.

I ,•J/4b• r--

+3 2+'-li-+ 2-)/4--+- kT 0 +

' "~~4+k. I ,

7
b2 +

2 +; -(2 (3+ k- 4 ( 2) (

(3 + k2) 0 0 0

S3a+6112 b 2  b2_ + _o 4a_+_b_12

2b212 b, ( + )/4i-h-A) b, (I - /'4-+-k-) +(--+}bl 4+0

Comment: Th& third and fourth conditions are written in the cross
section z = 7.

Curve a is obtained during free distortion of the end sections

and indicates an internal constraint inherent in conical shells.

Curve b is plotted for a shell with a rigid attachment of the end

section z = 1. The difference between the ordinates of curves a and

b shows the effect of the embedding of the section z = , of a conical

shell.

Comparing the curves in Fig. 8 with analogous graphs [i, ij4], we

can conclude that there is an agreement in the nature of the distribu-

tion of the normal stresses over the length of conical shells. Such

an agreement should not be regarded as accidental.

FTD-TT-62-i652/i+2+4 -4o-



As has been shown (4], a calculation for bending of a conical

shell on the basis of Prof. V. Z. Vlasov's variational method in the

particular case corresponding to the hypothesis of plane cross sections

gives expressions for the stresses and displacements which entirely

coincide with the solutions of the resistance of materials when shear is

taken into account.

;lb [k'- C A more accurate calcu-

0 lation of the torsion of

t.2,S,.C,, a conical shell by the

0F • ,-0,2ci proposed method in the

_ I-CM second and subsequent

0,3--CM approximations can be

carried out by representing

the displacements (i) in

the form of several terms

of a series, as was shown

0 above in the solution of

0---------------- -the bending problem

Fig. 8. The loading scheme of a caisson Thus the use of Prof.
and its dimensions. Cross section of
the shell (z = 1). Graphs of the V. Z. Vlasov's variational
distribution of normal stresses along
the edge of a conical caisson, method for calculating

conical shells makes it

possible to obtain mare accurate solutions for the stressed and deformed

states both in the case of bending and in the case of torsion.
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THE EQUATIONS OF AXISYMMETRICAL THREE-LAYER SHELLS

WITH A LIGHT FILLER

V. F. Karavanov

In a previous article [1] the basic equations of axisymmetrical

three-layer shells with a light filler were given without derivation

in a linear formulation with assumptions based on neglecting the

longitudinally directed stresses in the filler and the bending

rigidity in the supporting layers.

In the present article we shall give the derivation of these

equations in detailed form with the scheme and notations of E.

Reissner .[2] taken into account.

The equations obtained for axisynmetrical three-layer shells

are similar in form to the equations of the theory of thin homogeneous

axisymmetrical shells obtained by E. Meissner [3].

The equations for axisymnetrical conical, cylindrical, and

spherical three-layer shells are obtained from the general equations

as particular cases.

In certain practical cases terms depending on the transverse.

compressive deformation of the filler can be neglected. For this

ITD-TT-62-1652/i+2+4



case the basic equations of axisymmetrical three-layer shells are

given without taking the transverse compression of the filler into

account.

The well-known equations for homogeneous thin axisymimetrioal

shells are obtained as a particular case of the equations of axisym-

metrical three-layer shells.

Basic Assumptions

The wing and fuselage surfaces of present-day high-speed aircraft

must remain smooth under a considerable load. There thus arises the

question of. the transition from a stringer covering to a covering of

three-layer type, since the latter possesses great rigidity and

strength and yet is light-weight. Great rigidity of coverings is of

special value in the case of high-speed aircraft, since the question

of sagging of the covering acquires great significance in connection

with the considerable increase in flight speed. Three-layer structures

with a light filler also possess good heat-insulation properties,

soundproofing, good vibrational characteristics, and other qualities.

A three-layer structure consists of two strong thin outer layers

connected to each other by a filler which ensures the concerted

operation of the supporting layers. Foam plastics, honeycomb struc-

tures, corrugated sheet metal, and other materials may serve as the

filler.

The supporting layers are made of metal, plastic, plywood, and

delta wood. The calculation of three-layer plates and shells with

allowance for deformation of the filler as a three-dimensional body

is very cumbersome. Moreover, it is of little use in the case of

light fillers, the bending rigidity, tensile rigidity, and longitudinal

shear of which are small in relation to the rigidity of the suppor•t
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layers. In most cases approximate theories, based on various schemes

acceptable in practice, are used in calculating such structures.

The present article is based on a scheme proposed by E. Reissner

[2] with the following basic assumptions:

a) the bending rigidity of the supporting layers themselves is

not taken into account (the nonuniformity of the distribution of

stresses over the thickness of the supporting layers is neglected);

b) the filler undergoes only transverse shear and transverse

compressive deformation, i.e., it is assumed that longitudinal stresses

and moments are absorbed exclusively by the supporting layers, while

the filler totally absorbs the transverse force (i.e., that the moduli

of normal elasticity and shear of the filler are equal to zero in the

longitudinal directions, but differ from zero in the transverse

direction);

c) the filler is regarded as comparatively thick, light, elastic,

and isotropic with a relatively small modulus of elasticity;

d) the dissimilarity between the lengths of the median surfaces

of the inner and outer layers is taken into account.

The Geometry of the Shell

We shall determine the location of points on the median surface

of an axisymmetrical three-layer shell by means of the angles e and

) (Pig. 1).

Let 8 be the angle 'between the normal to the median surface and the

axis of the shell;

i is the angle between the two meridional cross sections;

R, is the radius of curvature of the meridional cross section;

RR is the second principal 3'adiUs of curvature.'

By means of the two pairs of meridional and normal conis otross

PTD-TT-62-1652/i+2+4-



sections let us single out an element of an axisymmetrical three-layer

shell with the dimensions dS1 and dS2 (Fig. 2) and apply to it all

the internal and external stresses (Fig. 2).

Let us direct the coordinate axes as follows: the x-axis along

the tangent to the meridian, the y-axis along the tangent to the

parallel, the z-axis along the external normal to the median surface

of the shell (cf. Fig. 3).

The square of a linear element of the median surface of the

supporting layers

dSa- dS.- +dS•. (1)

Fig. 1. Coordinate system of Fig. 2. An element of an axisym-
an axisymmetrical shell, metrical three-layer shell.

The subscript "+" refers to the outer supporting layer, while

the subscript "-" refers to the inner supporting layer.

In turn, iS,*-A,,do;(
dS~t--A,* dy,(2

where A&+ and Aa+ are the Laz4 constants for an r ndefori'd median

surface of the supportir layers.



.9.••. . . - Y. as'° /C, .I,) V~ ~,.dJ',$

Fig. 3. Stresses, moments, Fig. 4. An element of the
and external loads acting outer supporting layer of a
on an element of an axisym- three-layer shell.
metrical three-layer shell.

Taking into account the dissimilarity between the lengths of

the median surfaces of the outer and inner supporting layers, the

Lamg constants of a linear element on these surfaces are

A,._-aa,_A3 ; A2 ,,,a•.A2 ,
where

2R- M2 (3)
A,-fRj; A=,sRlneO.

Here t is the thickness of the outer and inner supporting layers and

is taken identical for both;

h is the thickness of the filler layer.

Let us resolve the intensity of the external load acting in the

general case on the' surface of the supporting layers into a force

acting along the normal and a force acting along the tangent to the

arc of the meridian p, and q• (cf. Fig. 3).

The third component of this intensity, owing to the condition

of symmetry, goes to zero.
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Equilibrium of the Supporting Layers

In order to obtain the complete system of equations for an

axisymmetrical three-layer shell, it is necessary to consider the

equilibrium of the supporting layers and the filler layer of the

shell separately. By combining these equations we obtain the dif-

ferential equations of equilibrium for the entire composite shell.

The equations of equilibrium for an element of the outer and

inner supporting layer, respectively, of an axisymmetrical three-

layer shell for small displacements of the median surface have the

form

(NI: aAR sin e)'--N2a.tRcos 0+(p± . -t,)a,±a2.,RR, sin 0-0 (4)

+ - a,. (5)a1Z R! a2• KIR

Here Ni+ and N2+ are, respectively, the specific normal meridional

and annular stresses of the outer and inner supporting layers of a

three-layer shell (kg/cm); a+ and T+ are, respectively, the hiormal

and tangential stresses in the transverse direction of the filler

layer acting on the outer and inner supporting layers of a three-

layer shell (kg/cm2 ); p+ and q+ are, respectively, the components of

the intensity of the external load acting on the outer and inner

supporting layers of a three-layer shell (kg/cm2); the prime indicates

differentiation with respect to the variable 8.

Figure 4 shows an element of the outer supporting layer, while

Fig. 5 shows an element of the inner supporting layer. All other

internal factors,, owing to the condition of symmetry, go to zero.

Distribution of the Stress in the Filler Layer

As was mentioned, the filler is regarded an light, elastic,

isotropic, and homogeneous. Its bending rigidity, tension-omression

9:'.



rigidity, and shear in the longitudinal direction are negligibly

small. Consequently it operates in the transverse direction during

tension-compression and during shear (Fig. 6).

The differential equations of equilibrium of an element for this

stressed state [4] will be the following:

[RRsin (+ +-)(I-+--.) "[R,(1 + -.- )"- 2n. . (7)

Here a and T are, respectively, the normal and tangential sti'esses

in the transverse direction &r the filler. The subscripts z and 0

Indicate differentiation with respect to the variables z and 8.

Integration of Eq. (6) gives

+ +z ;2 ) -"8

The subscript "0" indicates that the stresses a and T refer to

the median surface of the filler (z . 0).

Let us integrate Eq. (7), after having first substituted expres-

sion (8) into this equation; we obtain

z+ [ in0 1RIR 2stne*oO.

The resultant of the transverse shearing stress Q is obtained

from Eq. (8) in the following form:

J .. ,,.•(±o)4$ \ 4M

(10



The integration extends over the thickness of the filler layer

and also over half the thickness of the surface layers, as a result

of the assumption that the stresses c+ and T+ can act on the median

smrfaoes of the supporting layers [5]. It follows from the meaning

of integration with respect to + that the supporting layers are

attached, as it were, to the filler by their median surfaces.*

From Eqs. (8) and (10) it follows that

; ,=•.(11)
k+g

This equation was obtained by discarding the terms --h in com-

parison with unity.

From Eq. (11) it follows that the transverse tangential stresses

are uniformly distributed over the thickness of the filler.

From Eqs. (8), (10), and (1i) the following dependences can be

obtained:
h+t (a1 4 a+T + 42......-) Q;

(12)

Q÷'-a-•--*T (13)

When h + t/2R << 1, using Eqs. (9), (10), and (11), we obtain

,RI3 in 0(aa÷÷- a3..a2_a,_o_)- -(R 2 sin $Q'; (14)

a,÷a•÷o+ + a,-a-o-- 2q,. (15)

* Although this introduces a certain inaocuraoy, It is so sa"l.
that it has no signiticant effect on-praetioal aslculations 4n the ,
case of comparatively thick fillers t or-1Lc / < 0.1. -The erz'ori'
of tbis assumption Is all the'Veatvz', tb* gr :zw th z'atio betwee*
the thiolmessies of' the layers t/)i.



Equilibrium of a Composite Shell

In order to obtain the equations of equilibrium of a composite

three-layer shell, let us introduce the resulting expressions for the

external and internal stresses of a three-layer shell [2].

The specific normal stresses

N1,-;+N,+ +a,_N,_; N2 =a,+N,+ +a,_N2 _ (16)

The specific bending moments

M1 ---(a.+N,+.--a=.N_); M, A+ (a,+N÷2 - a,_N_) (17)

The components of the external force

p-- a,+p, + a,.a._a._p_; q a1j+aq+ + a,_a,_q.. (18)

The intensity of the moment formed by the action of tangential surface

forces

m 2 +-(a,+a,+p_ -a 1 a,_p_), (19)

and also

2(aaq÷-a,-.-q-. (20)

To the above relations let us add the expressions obtained

previously.

The specific transverse force

2+ (12)

The normal transverse stress in the median surface of the filler

o0= • (a,÷+÷..+ + 6aA._1;) (15)

Using Eqs. (12)-(20), let uA add and subtract Eqs. (4) and (5).

After certain transformations we obtain the equations of equ4librium

i'



of composite axisymmetrical shells

(NR 2 sin O)'-N2R, cos 0 +- L)RR=sInmO-, (21)
(RL•-- (21)(MjRjstn O)'.-MR 1 cOsO+(m-Q)RR2Rs~nO... (22)

R, R, R1R2 MS(n 0 f~yO (23)

The latter equation becomes an identity, when the bending moments

are expressed in terms of the stresses.

From Eqs. (9) and (10) it follows that

R1Ii' sn 6O=R ,R2 sIn6°.-- z (QR, sin )'. (25)
h+t

According to Eqs. (23) and (25), we obtain the law of change of

the transverse normal stress over the thickness of the filler

,- o°-_. (- q __(26)

Hence it can be seen that the transverse normal stress consists

of two terms, one of which is constant, while the other varies linearly

over the thickness of the filler layer.

The Potential Energy of Deformation of the Shell

The potential energy of deformation of an axisymnetrical three-

layer shell is the sum of the potential energies of the deformations

of the supporting layers and the filler layer

n-n-,+n.. (W7)

The supporting layers are characterized by the following elast:Lc

oonstants: the modulus of normal elasticity •-' the Poisson oof--

ficient & . I~ , and the shear modulus - 2. + -•~2J + A(+p)"



The elastic constants of the filler are as follows: the modulus

of transverse elasticity Ec; the Poisson coefficient p is taken

equal to zero on the basis of the assumption made concerning the

operation of the filler layer; then the shear modulus of the f illerEC
0 c -

The supporting layers of the shell being considered undergo only

tensýion-compression deformation; therefore the potential energy of

deformation of the supporting layers

-- 2 M , N • ) a ÷ . ÷ R , ~ s n e 0 d + • I ,N 2 " N 2
---2NN,_,A _) a,_a+_RRI sin 0 dO d?.

From Eqs. (16) and (17) we obtain

2a2+N,,-N1,+-2MM, 2a,1 4 N 2 ,=N,+-2MW. (29)
2 2 ,

2a,.N,_=N,- M,; 2a,_N2 _.= N 2 - M+ .
1h+t A+t

Using the relations obtained and the condition h + t/2R << 1,

expression (28) will assume the following form:

2 C* (30)
+ L(Al? + M'2-2,pM1M.J R1Rg sinS dA dyj

where C* is the tension-compression rigidity of a three-layer shell;

D* is the bending rigidity of a three-layer shell

C*-Mat (.31)

On the basis of the assumed distribution of the stress in the

filler layer (of. Fig. 6), the potential energy of deformation of

this layer will be as follows:i 4



4 2 JA t + + + z ~) RRsin mndo dpdz.

As previously, we neglect the terms z/R in comparison with unity,

while the values of a and T are taken from Eqs. (11) and (26).

Then, integrating with respect to z, we obtain
n. I h+t f,2 +I • N2

.'I. _ T + (32)
.C 12( R, 2(2

+_ Q2+-)o) RIRf sin 0dO dq.

-'11+

On the basis of (27), (30), and (32), the potential energy of

deformation of an axisymmetrical three-layer shell

!V. N•(My+MM--NN,)+M-M+

(33)
E, 12+ -t)0

Relationships Between the Stresses, Moments, and Displacements

* in the Case of a Co!mosite Shell

According to Castiglianots principle, the stressed state actually

arising in the shell differs from all statically possible states ýn

that the potential energy of deformation of the shell ], determined

by Eq. (33), assumes a minimum value.

Thus it is necessary to find the minimum of a functional II depend-

ing on six unknown functions N1 , N2 , MI, M2, Q, and ao, which satisfy

the four equilibrium equations (21)-(24). The problem of finding this

arbitrary extremum of the functional II in the calculus of varia-

tions is usually replaced by the problem of finding the absolute

extremum of a certain other functional T.

In order to set up the functional r, let us use the method of

undetermined multipliers, whioh preserves the coalete equivalence

I r/ t /': . ,



of the variables [6]

- -$f0( , A 2  M1 , , Q, -.) dO d,. (34f)

4

In turn tp -+»iI.
I.-1

where F is an integrand expression for the potential energy H and is

determined by expression (33); vi (0,p) (i = 1, 2, 3, 4) are

unknown nonvarying Lagrange multipliers;

vi are the corresponding equilibrium equations determined by the

expressions (21)-(24).

It can be shown that each of the four nonvarying Lagrange multi-

pliers is nothing other than a displacement in the corresponding

directions v. = U, v2 = P, v3 = w, v4 = kj

where u and w are linear displacements of the median surface of a

three-layer shell in the direction of the x- and z-axes;

0 is the angle of rotation of the normal to the median

surface of the shell in the direction of the x-axis;

k is a quantity proportional to the transverse compressive

deformation.

Thus Eq. (21) is multiplied by u, Eq. (22) by P, Eq. (23) by w,

and Eq. (24) by k.

Then the functional 0 will be written thus:
•,{c, + I +M -2pM/4)+O.l1-!-(,V'•+N_22•,' • 2-2 M' j

+- - -- [ "--+-L --- +1 _• q] RR, sin 0 +
o 12(o+÷R,÷ (A'I]+ O

+a I(NR, sin 0)'- N2, cosO +( +-X) RR.s6]+

+ P I(MR2 sin )' - M2R, cos 6 + (n - Q) R&,R sin 0 +

+ V [.QR sin OY- + q .,s1]
+M ,A -f(R]P



The extremum of this functional occurs for the Euler condition

ON.0) N ý06

.. . . .. .. . (36)

O6*j.0.

where 0 N is the partial variation of 0 with respect to N,;

0 is the partial variation of 0 with respect to etc.

Evaluating Eqs. (36), after elementary transformations, we obtain

the following expressions:

'r II(h •L)CI J (h+"0C1 a" +w +cs' 1 + I2--R C1 I2E, Rj 1+2E,R, (37)

M,- •. 8' h .

I 12R' _- , 12 -•,)R,R, R, ' e (37)

D RI ( ,t+),R•,'SI ,,; (39)

M 2-&M, P Got
,(A+ t) R1R o, (40)

RiRLSI (,, + 0-" 
(42)

Let us reduce the system of equations (37)-(Q2) to a more con-

venient form.

Let us introduce the variable coefficients X2* ,8 , and ).
). _! (h-÷ t)I ..4

). .. L2i.±Ž * A+1 1E2 R 12 E,

ks I (A+p OtA--- ----, so)

Then Eqs. (37) and (38) will assume the form(1 +1 -•) A,,-, 16,-,- COI ---+ W,+,
3(3



Let us eliminate k from Eqs. (39) and (40) by using relations

(24) and (42); we obtain

(1 +).2) M 1-( )M, -MD* (Fo I

In transforming Eqs. (39) and (40) it is assumed that X1 -

- on the basis of the expressions for D* and X, from(h + t)E-cRI
(31) and (43).

As a result we obtain a system of equations for an axisymmetrical

three-layer shell: three equilibrium equations (21)-(23) and five

relationships between the stresses and the displacements (37)-(41).

From these eight equations eight unknowns are determined: three

stresses N1, N2 , and Q, two moments M, and M2 , and three displacements

U, w, and •.

The normal transverse stress in the median surface of the filler

co can be determined from Eq. (24). The action of the transverse

shear of the filler figures only in Eq. (41), while the action of the

transverse compressive deformation is reflected in Eqs. (37)-(40).

If in Eqs. (21)-(23) and (37)-(41) it is assumed that
,-Em-oo. ) ;,- .,-)-•0, D* -•• C*- El,

12

and m- 0, we obtain a system of equations for thin homogeneous

axisymmetrical shells. Moreover, these equations completely coincide

with the well-known equations [71.

Reduction of the System of Equations to Two Simultaneous
Equations

Let us reduce the system of equations obtained (21)-(23) and

(37)-(41) to a system of two second-order differential equations.

From Eqs. (40)-(41) let us determine the specific bending moments

M1 and MR

-



L,' --

Here
-(I + X,) (1+%2) - (1&-•),. ((45)

Let us introduce Meissnerts function V QR2. (46)

Let us introduce the values of Mi and M2 from (44) into Eq. (22).

As a result, after certain transformations, we obtain a deforma-

tion-compatibility equation containing the variables • and V

R2 • +r R2y V •(o\

-[Y2' V0 (6). -

Here

Rf= I R +(,8)

01 Me= -( K--jj-21 72 cot +, (,72 o, -8

In order to obtain the second equation, let us consider the con-

dition of equilibrium of the part of the shell cut off by a parallel

circle of radius r - R2 sin 6 (Fig. 7), i.e., let us project all the

forces acting on the part of the shell and on the axis of syinutry of

the shell. Then
o0, =S2-:Rsln o (N, sin -q coso)- 2,,C+
+ [ i.?,,s n (p sm e- co s6)R&dou..

This equation can be conveniently rewritten as:

F (0) (NJ sin 0 -Q*coS ) &sInu
(40)

u.C+ S Rsin 0(q cos I p do 6)R ft.



Here F(O) is a function of the load and the ge~ometrical dimensions

of the shell and is the axial component of the internal

forces acting on one radian of the contour of the cross

section;

2rC - Po is the axial component of the concentrated forces (not

shown in Fig. 7).

.Let us express N, and N2 in terms of V and F(e).

Then from Eqs. (46) and (49) we obtain

O)+ • , t0. (50)
P2 SIn2S0 R2

From Eqs. (23), (46), and (50) we obtain

N2V' - A, (o) + qR,.
R, R, &W , (51)

S Y

dS Y

N,. ds•,.~ a (N1 . d32 .)

Fig. 5. An element of the Fig. 6. Model of the stressed
inner supporting layer of a state of the filler.
three-layer shell.

Let us introduce the second load function

'H(e)- + qR1R. (52)

Equation (51) will assume the form

N, V, H(O) (53)
m R e



Equations (21) and (23) are identical to zero, if we substitute

in them the values of N1 and N2 from (50) and (53).

Let us eliminate w from Eqs. (37) and (38). We obtain

+(1 +1 )i R 3] NS*(' AotS+

Let us substitute in Eq. ( 5 4) the value of u from (41) with (46)

taken into account. We obtain

I'R,

-h+*)o= R, "(55)

Let us represent Eq. (38) in the following form:

Got O+ [I + 2) A[ - 1--) N ÷q

Differentiating once both sides of this equation and substituting

in the equation obtained the value of u from (4i) with (46) takep

into account, we obtain

U ,- ., C=*.{,t,[(I +1 2 ),N-(2 - 13 )N,]+

+Rataa (I +IX )3I*)a N+ N3 +-3 (56)

-- +--lO 14=6 , + V oaj ,'•'•
We P I(A tf) OcRa sina2

Equating the left-hand sides of Eqs. (55) and (56) and substi-

tuting in the equation obtained the values of N, and Na from (50) and

(53) and their derivatives NJ and NI, after a number of transfowuma#$•Ois,

we obtain #we second equation (the equilibrium equation)

-,fk



(I + '-312 R, v"+ K, +,,.r@ + o1+

3'- , L 3'/R 2 ' (h+t)OC R, (57)

-P+ -- , 4 ..0o V+RC*p-OG(6).
8 3 j

"Here F(s) IB()He
02 (0)- B, (0) W, +B• B • +

"-¼In2,%m ,

R~aa+ .1 +( 1 ~
where B, (0) +( I~)~J~+i-) 3 ? (~--~)?t0

B,(0) (( -1. ),)R, +(I + ±-L) 2)R, +±(I + 1.)-')I&-0 +

.Thus Eqs. (47) and (57) are the basic differential equations of

axisymmetrical three-layer shells in the case of small displacements.

Assuming in Eqs. (47) and (57) that

Go•-u'4-cc, ).j... =o0,

,D*- " C*,-Eh.,mO,
S 12 ,

we obtain the general equations of E. Meissner's theory of thin

elastic homogeneous axisymmetrical shells [3].

After solving Eqs. (47) and (57) for the given axisymmetrical

three-layer shell and the appropriate boundary conditions, let us

determine the specific normal stresses N, and N2 from formulas (50)
and (53), the specific bending moments MH and Mg from formulas (44),

and the transverse force Q from expression (46). The specific normal

stresses in the outer and inner supporting layers are determined on

the basis of expression (29). Since the thicknesses of the outer and

inner layer are identical, the normal stresses in these layers will be

equal to the specific normal stresses divided by the thicokness t.

_ _ _ _



The transverse tangential stress in the filler is calculated

from formula (11), while the transverse normal stress is determined

from Eqs. ( 24) and (26).

Particular Cases

From the basic differential equations for axisymmetrical three-

layer shells (47 ) and (57) we obtain the equatiorefor certain types

of shells: conical, cylindrical, and spherical.

Conical Shell

In the conical shell the angle 0 is constant, while the radius

of curvature R, = =. Let us introduce a new independent variable s,

the distance from the apex of the cone along its generatrix (Pig. 8).

We have ds, - Rjde.

Let do.(), then do d(' and d2" ,d 2 ( "

Equations (47) and (57) will assume the form:

R ,

R,1 fRý +,, -^,l
R1 R,

Aj',at + R'1 + Ra RCa OR7). x

RI V-O,(s);

Here o (I)- + [RV +[(Iact, , o + R, (,Y- +
a* R , %2.

"YRsia2Sr +R,() + (61)2

06 (S) (A -+

Iwo



where
BI(s)-(1 +!%)R ( ).

B2 (s) -(it - Xa)R 2 +(1 +.L).x)R, +Q ±+xIý)R 1Rj;.+ (62)

For a conical shell it is necessary to qssuine that

2 - . 2, +). 2-P,0 .m e 1€', + %" 7 1 ' ( 6 3 )
I 

(2

Dividing both sides of Eqs. (59) and (60) by R, and substituting

expressions (63) in these equations, after certain transformations,

we obtain the basic equations for conical three-layer shells.

[(I1-I')s,+(2- 2 ) ta 6s2 + wae 9'0 +

+I(-p) s4 + (2+)-. W '+.ws. p2 $-l I-),+

V
+ ( - •) ,•+ ohm ej- ( - tM) 01 I-•)..:o,+(•

S - +
+ C, h'.so, o; (S). (65)

Here o* (s) (-) ' + w • 0 - 2-ot -
p So •,+" oif .OMO '-, PI(Ip)S, +fig .

+ 2 (1 - 10) wt? Oss + n•4 )]--, (66)

h_(h +.•C* ] 2qu..



If it is assumed in Eqs. (64), (65), and (66) that E0 - G -

Eh3
coo (D - m, - 0, D* - ff , and C* - Eh, we obtain the well-known

equations for thin homogeneous conical shells [8].

Cylindrical Shell

Let us divide Eqs. (59) and (60) by R, and assume that in these

equations
e-1, ds=dx,. R,=o, R2-a, -

12. (k+t)t £. ,l--i,

where x is the distance from the left edge of the cylindrical shell.

We have

+)I- F, V.- 1+1-

(I +!X)av.- (, +,a -- (68)

If it is assumed in Eqs. (67) and (68) that E.-M GomD*-
Eh

3

- -n-- C* Eh, and X2 - m - 0, we obtain the equations for thin

homogeneous cylindrical shells (8].

Spherical Shell

Let us assume that in Eqs. (47) and (57)

Rz--R&-4-const, (1,--- k .- + -
2 ,0 Be'

Then we obtain the equations for spherical three-layer shells

(1+A)DO

&2 (69)



+.t ( ++ 1)- o.

If it is assumed in Eqs. (69) and (70) that E - Gorn",

we obtain the well-known eqi.ations for thin homogeneous spherical

shells E8]. Equations (67)-(70) coincide with the corresponding

equations of E. Reissner £2].

The Equations for Axisymmetrical Three-layer Shells Without
Allowance for Transverse Compressive Deformation or the Filler

In solving the problems of transverse bending and over-all loss

of stability of three-layer plates and shells, the effect of trans-

verse compressive deformation of the filler is generally neglected.

From Eqs. (47) and (57) it can be seen that the effect of transverse

compression of the filler may be neglected, if

I(+t)t ( f <

Abiding by this criterion, we shall neglect terms depending on

the transverse compressive deformation of the filler.

Then, assuming that in the general equations for axisymmetrical

three-layer shells (47) and (57) Ec - a, X1 - X2 - 0,

we. obtain
Ap +[V i, + I 2 - - +" -P V -.

A. v-, +
R R,_L'R . (71)

- C ... R, V+R 1C*P-i($). (T2)(A+ 0o 09,



Here D - is the cylindrical rigidity of a three-layer shell,

S(4) ~) r/ R, _. .,Ao+,•Got 0.+%"• (73)

+ 2-Z-' -pR. (P. + PR.) - (qRe~y.

In operator form Eqs. (71) and (72) will be

D" (71*)

, (•-R,+,•,,. - V+, 1C•-,(,. (72*)

where the operator

)R: R2L& l0a + R2 - 2i 0 '...~S()(J
R, LR R j(74)

Let us obtain the equations for the particular cases.

Conical Shell

Assuming that in Eqs. (64), (65), and (66) Ec -- and o- O- we

obtain

•I **V" ,'--[ I+' co +-••,•1• Cs~e -•0 K (s),
aD D (75)

where

K(s)-,*p0 * -7 -,Sw os-2se,,,so. (77)

In operator form Eqs. (75) and (76) will be writt~en



where the operator

L,( )-s( )"+(''--- . (78)

The solution pf Eqs. (64) and (65) for a conical three-layer

shell with transverse compressive deformation of the filler taken

into account gives rise to serious mathematical difficulties. On

the other hand, Eqs. (75) and (76) for a conical three-layer shell

without allowance for transverse compressive deformation of the filler

have a simpler mathematical appearance.

Cylindrical Shell

If it is assumed in Eqs. (67) and (68) that E. -=A and Xg - 0,

we obtain the equations for cylindrical three-layer shells without

allowance for transverse compression of the filler

DD (79)

a V C* "8o)(h+t)aO,

Spherical Shell

In the case of a spherical shell we assume that in the general

equations (71) and (72) R, - R2 - a (where a is the radius of the

sphere). We obtain

L2(P)-p--P- .V-' -D )u (81)

IT=-w-6e-i652/i+2+4



Here !.( )--( )"+( )'oot--( )Nt'e,

Boundary Conditions

In order to find the magnitudes of all the stresses and dis-

placements occurring during the bending of a three-layer axisymmeetrica!

shell, regardless of the assumptions E. - ., or E. • w. it is necessary

to assign three boundary conditions on each edge, as in the case of a

homogeneous axisymmetrical shell:

a) for a rigidly embedded edge

nm-O-0

2  P-.-( -p,--- o (84)

or

- (85)-

b) for a shifting pinched edge

p-A-N1 -O; (8§)

c) for an edge supported on hinges

t-u M1  (87)

or
"ams,-MIm . (88)

d) for a freely supported edge

uI MgInN•I• (89)

e) for a free edge

M--N1 -Q--0. (90).

ITD-TT-62-1652/i+24)
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Fig. 7. For the determina- Fig. 8. Notation for a con-

tion of the load function. ical shell.
ds1 - Rld 8;
ds2 - rd q;

R2 - s cot G.
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